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Estimates of the errors incurred in various asymptotic 
representations of wave packets 
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(Received 16 March 1981) 

An earlier paper (Gaster 1981) discussed different asymptotic representations of the 
isolated wave packet that evolved from an impulsive point excitation of a laminar 
boundary layer. Comparisons of the various asymptotic representations of the integral 
describing these packets were made on the basis of numerical evbluations of the 
various approximations together with the direct numerical solutions of the integral. 
Here the problem is pursued by analytical means, and error estimates are obtained 
for the different methods used. 

1. Introduction 
The process of transition from a laminar to a turbulent flow i n  a boundary layer is 

being studied experimentally at the National Maritime Institute. One of the experi- 
ments concerns the evolution of a wave packet initiated at a point on the surface of a 
flat plate. The resulting wave packet is three-dimensional, the amplitude of the distur- 
bance is finite, and the motion evolves in a base boundary-layer flow that is increasing 
in thickness in the downstream direction. Interpretation of experimental data is 
further complicated by the fact that in the real flow there are various uncontrolled 
environmental factors that generate three-dimensional non-uniformities in the base 
flow and also introduce additional sources of unsteady disturbance. Before embarking 
on a full interpretation of the experimental observations it is desirable to try and 
break down the solution into individual tractable sub-problems that can be tackled 
analytically. In  so doing it is inevitable that the sub-problems will appear to be some- 
what contrived, but this need not prevent the exercise from being valuable. Here we 
are concerned with asymptotic descriptions of a two-dimensional wave packet. In  
order to clarify certain issues that have arisen in defining appropriate expansions 
we consider an idealized and quite artificial flow-a parallel boundary layer. The 
analysis discusses the asymptotic expansion of a pulse-excited wave packet propa- 
gating in this parallel flow. The simplification enables precise expansions to be derived, 
and provides estimates of the errors incurred in their use. It is intended to apply the 
results of this work to physically more realistic problems involving boundary-layer 
growth and three-dimensionality of the packet (see Craik 1981). 

The following discussion is concerned with the linear stability of a parallel mean 
shear layer perturbed by a stream function in the form of a travelling wave 

#(Y) exp 4 a  - wt) ,  

where +(y) defines the internal structure of the disturbance through a stream function, 
OL is the wavenumber and w the frequency parameter. It is generally found that 
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instabilities can occur at sufficiently large Reynolds numbers. Such instabilities are 
defined by a dispersion relation, w = F ( a )  say, that links the frequency and the wave- 
number of possible eigenmodes. Instabilities in the form of exponentially growing 
waves (increasing in amplitude with x when a1 c 0, or with t when w1 > 0) often arise 
over a range of real frequencies or wavenumbers. A wavemaker at  some fixed location, 
executing simple harmonic motion at a frequency wo that lies within this band, will 
generate a propagating wavetrain of the form 

$(x, y, t) = W{#(y, a(wo),  wo) ei(a(wo)s-wot) 1 7  (1) 

where a(wo) is defined by the appropriate dispersion relation, and where a{ } denotes 
the real part of { }. 

Excitation in the form of a discrete pressure pulse acting at a point on the boundary 
results in a disturbance described by an integral of the above travelling waves over all 
wavenumbers : 

(2) 

The evaluation of (2), at any given value of y, can of course be obtained at  every point 
on the (2, t)-plane by direct numerical summation, but this rather cumbersome 
approach does not lead to helpful mathematical descriptions of the flow. It turns 
out that in cases of real practical interest we are concerned with the evaluation of 
(2) at relatively large values of 5 or t ,  where it is appropriate to use asymptotic 
approximations. 

A t  large x or t the major contribution to the integral in (2) arises from the exponential 
term, and it will suffice for the purpose of the present discussion to concentrate on the 
evaluation of the simpler integral 

$(z, y, t)  = ~ { l # ( y ,  a, w ( a ) )  ei(az-da)t)da). 

Ia = Sexp i(ax - w ( a )  t )  da. (3) 

In Gaster (1981, hereinafter referred to as I) approximations to the above integral 
were discussed for the dispersion appropriate to the parallel-flow approximation to 
the flat-plate boundary layer a t  a Reynolds number R of 1000. In this problem the 
modes are well separated, and it is appropriate, at  large x or t, to consider only that 
contribution arising from the dominant travelling-wave mode, and to neglect the 
influence of higher modes or of any continuous spectrum. It has been shown (Gaster 
1978a) that a good representation of the dispersion of the dominant mode for such a 
flow is given by the power series 

Over the parameter range of interest in this problem the series either converged to 
sufficient accuracy, or could be ‘helped’ to do so by the use of a nonlinear Shanks 
transformation on the partial sums. 

Three asymptotic representations of (3) for large t were considered in I. The resulting 
expressions were evaluated numerically and then compared with numerical sum- 
mations, which will here be called ‘exact’ solutions. Whereas two of these approxi- 
mations provided solutions that approached the exact result as t + m ,  albeit at  
different rates, the third expansion generated wave-packet shapes that were far 
removed from those derived by summation, even at  the largest values of x considered. 
From the computations it was not a t  all clear whether this type of approximation was 
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in fact a true asymptote to ( 3 ) .  The particular expansion in question arose from the 
so-called ' real-axis approximation' (RAA), which has sometimes been used to describe 
linear wave patterns in cases of weak instability (Gaster 1968a; Landahl 1972). 

In  conservative wave system, where the dispersion is purely real, t,he concept of 
wave groups propagating away from a source along the group vector is well founded. 
The Fourier components of any initial disturbance will then propagate away from the 
source with their appropriate group velocities, and it is a relatively straightforward 
matter to evaluate the resultant motion. Fluid-dynamic stability problems, where a 
band of waves may be weakly amplified whilst others are damped, exhibit dispersions 
that are not wholly real. It is nevertheless tempting to use this simple kinematic 
solution to describe the evolution of instabilities even though the dispersion relations 
contain some relatively weak imaginary terms. This has been attempted by making 
the assumption that the real part of the dispersion controls the direction and speed of 
propagation of different wave groups, while the weak imaginary part controls the 
actual magnitudes of the waves at  the different locations. Account for dissipation, or 
for any positive energy transfer to the waves through an instability mechanism, is then 
made through a suitable weighting applied to the amplitudes given by the ray theory. 
This idea has been shown (Stewartson 1973; Gaster 19788) to be applicable to pulse- 
excited wave packets only in those cases where a certain dispersion parameter is very 
small-a condition not satisfied by the instability waves that occur in the boundary 
layer on a flat plate. This limitation of the RAA has been the source of some contro- 
versy in recent years. It turns out that the most-unstable waves are quite properly 
represented by the approach, and one might well expect (and this is the basis for the 
method) that at lemt the central region of the packet surrounding the most-amplified 
ray would also be modelled reasonably closely. But in I the real-axis approximation did 
not appear to asymptote to the proper limiting solution for very large x or t .  Since this 
problem was not properly resolved by the numerical computations, it  seemed worth 
examining the asymptotic behaviour of the various approximations in greater depth. 

2. Asymptotic approximations 
2.1. Steepest descent 

The integral in ( 3 )  can be expressed as an asymptotic series most effectively by the 
method of steepest descent, where the exponent is expanded about a saddle-point in 
the complex a-plane. The series is given by 

where for each ray, defined by x / t ,  a point a* is chosen such that 

aa i (a : -u (a ) )  = o at a*. 

The steepest-descent expansion can be carried out on (3) either by integrating over 
the a-plane to give (5), or by changing the variable and the integrating with respect to 
w in the form 

I, = f ei(a(w)-wt/z)  x du. ( 7 )  
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When the integration is carried out in the o-plane it turns out to be convenient to 
treat x as the large parameter of the expansion, and hence to derive the series in inverse 
powers of x :  

To leading order, a t  least, the above expression is identical with (5), since for real x / t  
we have 

where a* is identical with a ( w * ) ,  and 

The ray defined by the value of x / t  for the most-amplified waves will, however, be 
different in the two frames of reference. In  the temporal sense the most rapidly 
growing disturbances occur along the ray defined by a: = 0 (Gaster 1968b), while in 
t,he spatial case maximum growth takes place where oT = 0. The saddle points defined 
by these two conditions will. have different projections in physical space, which are 
linked to different values of the group velocity. The real rays along which the growth 
rate is a t  a maximum will therefore not be coincident in the two frames of reference, 
and this has repercussions in the approximate solutions that rely on expansions about 
the most-unstable ray. Different approximations then arise in the two reference frames. 

The numerical evaluation of (5) requires either that t,he dispersion be known 
explicitly, or that (6) can be satisfied and all the necessary derivatives defining the 
As found numerically for any given x / t .  In  I the leading term was evaluated for a 
range of values of x and t ,  and the resulting wave-packet shapes were compared with 
those obtained from the direct numerical summation -the 'exact' solution. In  fact 
at large x or t the agreement between these two sets of results was found to be extremely 
good. The complex coefficients A,, A ,  and A,  have now also been computed from the 
expressions given in appendix A for the dominant ray, where x / t  = 0.424: 

A ,  = (5.036, 0*8873), A ,  = (79.85, 705*0), A ,  = (1.393, 1.365) x lo5. (10) 

For neighbouring rays values very similar to the above were obtained, but for rays 
well away from the centre of the packet the series representation of the dispersion 
failed to converge well enough to give accurate values of the higher derivatives in the 
expression for the As.  The difficulty arose purely because the dispersion series was 
based on an expansion about a real value of the wavenumber. This provided better 
convergence a t  the centre of the wave packet than at  the edges, but there is no reason 
to expect the coefficients A,, A, ,  etc., to behave in other than a smooth manner with 
x / t .  The error incurred in truncating the asymptotic series, which will be proportional 
to  the leading term on that ray, is likely to be of similar magnitude over the whole of a 
packet. In  retrospect, then, it is not a t  all surprising that such excellent agreement 
between the leading term of the steepest-descent expansion and the exact solution was 
achievedin I, as the predicted error, based on A,, turns out to be of order 0.25 yo a t  an 
x of 800, and is still only 2 yo a t  a distance of 100 displacement thicknesses from the 
source. 
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2.2. Gaussian 

The 'Gaussian' approximation to the integral is obtained by truncating the expansion 
of the exponent in (4) to second degree and integrating the resulting expression in 
closed form. The dispersion relation can be expanded about any convenient mode- 
but it is usual to choose the one associated with the rays that form the centre of the 
packet. A t  large values oft this will be close to the eigenmode with a: equal to zero. 
It should be noted that a t  finite values of x the square-root term in the denominator 
will have the effect of moving the position of the maximum of the wave packet envelope 
away from that given by the limiting ray for the most amplified mode. But here we are 
concerned with the asymptotic behaviour, and it will suffice to expand about the 
point a#, where (aw/aa) (a#) is real. 

Equation (3) can then be integrated completely with the result 

For the ray x / t  = (ao,/aa) (a#) the above result is identical with that given by the 
steepest-descent expansion, and for neighbouring rays defined by x / t  = E + V,, where 
V, is the group velocity of the dominant ray, the right-hand side of ( 1  1) becomes 

for small values of E .  

Since the leading term of the steepest-descent asymptotic series provides such a good 
estimate of the solution (with error of order IAJ/t) ,  this result can be used to assess 
the accuracy of other less-precise approximations, at least to that order. The leading 
term of the steepest descent expansion for small E (see appendix B) is 

showing the Gaussian result to be in error by a cubic term in the exponent of magnitude 
-k3K,t ,  where K ,  = (0.2989, - 1.348). 

2.3. The real-axis approximation 
In this approximation the dispersion is treated as if it were real in so far as the propa- 
gation of the different wavenumber groups is concerned, whilst the imaginary com- 
ponent determines the actual magnitude of the waves. Each point, designated + , on 
the real a-axis, maps onto the (x ,  t)-plane through the relation 

and provides the solution 
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The above expression, which is equal to the asymptotic result for the most-amplified 
ray where wi(a#)  = 0, can be developed in a series expansion in E (see appendix C) by 
the same procedure that was used in the discussion of the Gaussian approximation. 
Expression (14) then becomes 

for small 8,  where 

This result may be compared directly with the expansion derived for the leading 
term of the steepest-descent result when this is also written out in terms of 6.  It is 
apparent that the RAA, as defined by (14), is in error at  the term involving e2 in the 
exponent, of magnitude (2.879, 13.25). 

In a previous attempt (Gaster 19783) to draw attention to the possible pitfalls of 
using the RAA, the steepest-descent result was linked to parameters on the real axis 
for situations when the saddle point lies close to the real axis. This produced the 
expansion 

which reduced to the simpler form (14) if 

a condition not realized in the instability waves that occur in the flat-plate boundary 
layer, except at  the centre of the packet where (ao,/aa) (a+) is identically zero. It is 
worth noting that the exponent of the extended form of the RAA can be written (see 
appendix C) as 

which is only in errror at the cube of E ,  where K4 is 

and has a numerical value equal to (131-9, 27.8). 

3. Discussion 
The integral formulation of the wave-packet solution is ideally suited to evaluation 

by the method of steepest descent. This technique produces an asymptotic-series 
solution along any given ray x / t  in terms oft. From the first few terms of this series, 
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for the specific case of instability waves on a flat plate, the approximation is very good 
indeed for values of x occurring in cases of practical interest. In fact, the leading term 
by itself is accurate to roughly 0.25 yo at a distance of 800 boundary-layer displacement 
thicknesses from the source, the farthest distance for which numerical comparisons 
were made in I. The inclusion of higher terms would effectively enable a precision of a 
few parts per 100 000 to be obtained! At even quite short distances from the source, 
where asymptotic techniques seem hardly applicable, the leading term provides 
approximations that are accurate to a few per cent. The numerical results presented in 
I are entirely consistent with these estimates. 

The Gaussian approximation has been compared with the leading term of the 
steepest-descent asymptote in the neighbourhood of the ray defining the most- 
amplified waves. For the particular dispersion under discussion the ratio of this 
solution to that of the steepest-descent approximation is 

, (20) eiK,  cat 

where K ,  = (0.2989, - 1.348). Therefore for a constant value of E (of appropriate sign) 
the error will increase exponentially with t, i.e. in these co-ordinates the Gaussian 
approximation does not asymptote to the true solution. However, since the width of 
the wave packet effectively decreases in terms of E with increasing t, it is appropriate 
to use a similarity scaling E = E2t that takes account of this factor. Then, for a given 5, 
the ratio of the Gaussian approximation to the steepest-descent term will behave like 

eKlt*, (21) 

and this can be made as small as desired by taking t large enough. To assess the 
magnitude of this error it is convenient to consider the points e0, where the amplitude 
of the wave-packet envelope is one-half that at the peak. For the Gaussian solution 

where K = 0.5971, co = + 1.07%-4. 

The cubic term in (13) gives rise to an error at  E,, of exp { k (1.689 + 0.374i) ti}, which 
at 800 displacement thicknesses downstream (where t = 800/0.424) is 4 yo in 
amplitude. 

The real-axis approximation provides a solution that can be compared with the 
leading term of the steepest-descent series to give the ratio 

(23) eZ'(K,q-K,) B * t  

where 

1 
K --. 

O - 2w" 

(24) 

The real part of K ,  must always be greater than the real part of KO, and in the present 
example the real part of the resultant difference in the exponent is -c2t x 1.325. 
Therefore the RAA solution does not asymptote to the correct solution as t -+ co when 
keeing x constant. It turns out from these values that the width of the packet as 
defined by the half-amplitude points is only one-fifth that given by the Gaussian 
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solution. However, the extended form of expansion given by (15) will behave like the 
Gaussian solution in that it does asymptote correctly, but in this case the coefficient of 
the cubic error term is very large and consequently the limit is approached more slowly 
than for the Gaussian solution. For example t has to be greater than 12 x lo6 for the 
error to be less than 1 yo. 

One of the referees has pointed out that this behaviour is to be expected for the pulse- 
driven wave packet, because in that case rays are being traced over distances very 
much greater than the length of the original packet, and this leads to unacceptable 
cumulative errors. He implies that the evolution of a given packet containing many 
cycles could nevertheless be traced for distances up to that of the length of the packet. 
Although this may well be true for certain types of complex dispersion, it does not 
appear to be a useful approach for the specific case discussed here. In  the boundary- 
layer example it turns out that the dispersive effects given by the real-axis rays are, 
in magnitude, only about one-fifth the correct value, and that group velocity ao,/aa 
has a maximum value (a2w,/aa2 is zero a t  a point on the real axis). Thus although the 
central region of the packet may be adequately represented for some distance down- 
stream, the leading and trailing edges will contain errors that increase with distance. 

4. Conclusions 
The analysis presented here provides a useful guide to the accuracy of various 

asymptotic representations of a point-excited wave packet in a ‘parallel boundary 
layer’. Real boundary layers grow with distance downstream, and this can be expected 
to add considerably to the complexity of the problem. Nevertheless, it  is helpful to 
have solutions to the simpler problem before constructing more-realistic models to 
represent the experiments. The method of steepest descent has been used to evaluate 
the asymptotic-series solution describing a wave packet generated impulsively at a 
point. Previously, only the leading term had been computed and, although this was 
shown to compare closely with the numerical summation of the integral describing the 
solution, no error estimates were made. Here three terms of the series have been 
evaluated. They show that, at distances from the source of practical interest in the 
context of transition studies, very great accuracy can be achieved. For most purposes 
it would only be necessary to evaluate the leading term to achieve solutions within 
0.25 % of the exact result. 

The Gaussian approximation has also been compared with the leading term of the 
steepest-descent asymptote. This form of approximation arises quite naturally as the 
leading term of a multiple-scale approach, but error estimates are not generally made. 
Such estimates have been obtained in the neighbourhood of the envelope maximum by 
comparing the different expansions of the solutions for small e. It turns out that the 
extent of a packet, in terms of z/t ,  decreases with t .  In  appropriate variables that 
incorporate this scaling, the Gaussian solution approaches the steepest-descent asymp- 
tote like exp (Kt-6). At very large distances from the source a reasonably good rep- 
resentation of a wave packet is thus provided, but a t  typical distances that arise in 
experiment the errors can be significant. At a distance of 800 displacement thicknesses 
from the source, for example, the cubic termin the exponent leads to an error of 4% in 
the amplitude at  q,, the position where the envelope has half the peak amplitude. 

Finally, a similar analysis was carried out on the real-axis approximation. In  this 
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FIQIJRE 1. Comparison of wave packets calculated from Gaussian model (12) (- 1 
and real-axis approximation (14) ( + + + + ). 

FIGURE 2. Comparison of wave packets calculated from Gaussian model (12) ( 1 
md modified real-axis approximation (10) (+ + + +). 

case the approximation was shown to provide a wave packet that was always of 
narrower extent in x/t than the true wave packet, even in the limit as t --f 00. In  fact 
the approximation did not asymptote to the true solution at all. The addition of an- 
other term to the approximation was, however, shown to provide a proper rtsymptote, 
with an error term of the same form &s the Gaussian solution, but of much greater 
numerical value. In  fact, a t  x = 800 the error at the half-amplitude positions is e*798. 
The predicted behaviour is illustrated in figures 1 and 2, which compare the Gaussian 
wave-packet approximation at x = 800 with the two forms of the real-axis approxima- 
tion. Clearly, both are unacceptable approximations at this distance from the source 
but, whereas the simple level of approximation (14) does not tend to the Gaussian 
shape, the second solution containing the extra term does, albeit extremely slowly, 
ast-+m. 

In  general the method of steepest descent is to be preferred, as it provides approxi- 
mations of the highest accuracy. There are cases, however, when it is desirable to be 
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Derivatives anw/aoln(a#) 
Real part Imaginary part 

0.094892 
0.424083 
0.173676 

- 2.96314 
- 15.3797 
- 149.565 
- 7294.26 
- 107613 

TABLE 1 

0.003142 
0.0 

- 0.799632 
- 3.44016 

9.60055 

5119.31 
- 481.387 

- 172050 

able to have a simple closed-form expression for the wave packet. Provided that the 
distance from the source point is large enough and the highest precision is not required, 
the Gaussian approximation may then be of use. Finally, it is concluded that the use of 
the real-axis approximation, even with the additional term, is quite inappropriate in 
the context of wave-packet evolution in boundary layers. 

This programme is supported by the U.S. Air Force (AFOSR Grant-80-0272); 
The Ministry of Defence, Royal Aircraft Establishment, Farnborough; The 
Admiralty Underwater Weapons Establishment, Portland; and the Department 
of Industry. 

Appendix A. Higher-order terms of the steepest-descent expansion 
For the parallel-flow approximation to the flat-plate boundary layer it has beon 

found that the dominant instability waves can be represented by the series dispersion 
relation 

w N M  - = 
a n=O m=O 

A,,(aR - (aR),)n (a2 - a:),. 

The technique used to sum the above series, which may not always appear to converge 
very well, by the application of a nonlinear Shanks' transformation, has been discussed 
by Gaster ( 1 9 7 8 ~ ) .  For the specific case chosen as an example for the calculations 
presented in I and in this paper, the Reynolds number is 1000 (based on the displace- 
ment thickness), and it is found that the most-unstable temporal mode 

((aw,/a,) (a#) = 0, a? = 0) 

occurs at  a wavenumber of af = 0.26763. The dispersion relation (A 1) can be differ- 
entiated to provide series expansions for the derivatives (anw/aan) (a#). These were 
evaluated for a = a# and are given in table 1. 

The coefficients A,, A,, etc. that occur in the higher-order terms of the steepest- 
descent expansion ( 5 )  can be evaluated by the procedure set out in Morse & Feshbech 
(1953). Writing 

- i  anw 
B, = - (a#), 

n! aa 
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the first three coefficients are 

5 . 3 @  3 B 4  
I -  23 BB, 2B, '  

A - -___-  

Appendix B. Expansion of steepest descent around the most-ampliiied ray 
The leading term of the steepest-descent expansion (5) is to be compared with the 

other approximations in the neighbourhood of the most amplified ray ( x / t  = V,), where 
(aw,/aa) (a#) is zero on the real a-axis. The exponential term in (5) can be expanded 
about this point in terms of the small parameter 8, where 

The exponent is 

where a0 X -(a*) = - 
aa t '  

w(a)  and (aw/aa) (a) can be expanded as a Taylor series about a#, 

a@ aw a 2 0  
#) + (a-a#) - (a#) + ..., 

aa2 
-(a) =-(a 
aa aa 

and in particular, when a = a#, using (B 1) and (B 3) we have 

(B 5) 
aaw a3w 
aaz aa3 

e = (a* -a#) - (a#)++(a* -a#),- (a#) + .... 

Hence 

The exponent can therefore be expressed in terms of e and derivatives of w at a# as 
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or, in a simplified notation, 

€2 s3w" 
(a#(V,+c)--)+Zw"-BoS+... 

Appendix C. Real axis approximation expansion around the most- 
amplified ray 

The exponent of the real-axis approximation is given by (14) as 

where a+ is chosen so that 

Again expanding w in a Taylor series, we get 

and hence 
a+ = a#+--*$- € w: 

w," 2(4 )3+  .*.' 
and the exponent becomes 

where w and all the derivatives have been evaluated at  a#. 
The extended form of the RAA (15) contains an additional term 

and this is equivalent to 

and therefore the exponent can be reduced to 
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